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ABSTRACT
Decay and dispersal of the tilted Bipolar Magnetic Regions (BMRs) on the solar surface are observed to produce the large-scale
poloidal field, which acts as the seed for the toroidal field and, thus, the next sunspot cycle. However, various properties of
BMR, namely, the tilt, time delay between successive emergences, location, and flux, all have irregular variations. Previous
studies show that these variations can lead to changes in the polar field. In this study, we first demonstrate that our 3D kinematic
dynamo model, STABLE, reproduces the robust feature of the surface flux transport (SFT) model, namely the variation of the
generated dipole moment with the latitude of the BMR position. Using STABLE in both SFT and dynamo modes, we perform
simulations by varying the individual properties of BMR and keeping their distributions the same in all the cycles as inspired by
the observations. We find that randomness due to the distribution in either the time delay or the BMR latitude produces negligible
variation in the polar field and the solar cycle. However, randomness due to BMR flux distribution produces substantial effects,
while the scatter in the tilt around Joy’s law produces the largest variation. Our comparative analyses suggest that the scatter of
BMR tilt around Joy’s law is the major cause of variation in the solar cycle. Furthermore, our simulations also show that the
magnetic field-dependent time delay of BMR emergence produces more realistic features of the magnetic cycle, consistent with
observation.
Key words: Sun: magnetic fields – dynamo – physical data and process – Sun: sunspots – Sun: activity – Sun: interior

1 INTRODUCTION

The 11-year magnetic cycle in the sun is not regular. The extreme
variation in the cycle can be seen as grand minima such as the
Maunder minimum and grand maxima namely the modern maxi-
mum (Solanki et al. 2004; Svalgaard 2013; Usoskin 2017; Biswas
et al. 2023a). Besides this long-term modulation, there are short-term
(6 – 18 months) variations which are so-called bursts of activity or
seasons of the sun (Rieger et al. 1984; Gurgenashvili et al. 2016)
and the double peaks (Karak et al. 2018) in the solar cycle. In ad-
dition to the cycle strength, the duration also varies in each cycle.
Waldmeier (1935) reported that the strong cycles take less time to
rise and vice versa (also see Karak & Choudhuri 2011; Cameron &
Schüssler 2016). Hence, the variation in the amplitude and duration
of the cycle is somewhat related. Further, the time of reversal of
the polar field of the sun is also not fixed, and it differs from cy-
cle to cycle by a few months to years. In fact, there are evidences
of possible triple reversals of the polar field (Makarov et al. 1983;
Mordvinov et al. 2022). Because of this variable nature of the solar
cycle, it is challenging to make a prediction of the future solar cycle
(Petrovay 2020; Bhowmik et al. 2023). However, prediction is com-
pelling because the solar magnetic cycle affects the heliosphere, thus
our technology-dependent society (Temmer 2021).

It is believed that the solar magnetic cycle is the result of a dynamo
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operating in the solar convection zone (CZ) and thus the variability
observed in the solar cycle must be connected to the dynamo action
(Karak 2023). There are enough evidences that the solar dynamo is
of 𝛼Ω type (Karak et al. 2014; Cameron & Schüssler 2015; Char-
bonneau 2020) in which the 𝛼 denotes the generation of poloidal
field from the toroidal one (the 𝛼 effect) and the Ω represents the Ω

effect in which the toroidal field is generated from the poloidal one
through the differential rotation. Since the idea of Babcock (1961)
and Leighton (1964), it has been observed that the tilted bipolar
magnetic regions (BMRs) decay and disperse on the solar surface
and produce large-scale poloidal field in the Sun (Dasi-Espuig et al.
2010; Kitchatinov & Olemskoy 2011). Hence, we shall consider this
Babcock–Leighton process for the generation of the poloidal field
in our solar dynamo model. The poloidal field generated near the
surface at low latitudes through the Babcock–Leighton process is
advected towards the high latitudes and further to the deep CZ with
the help of meridional flow, where the Ω effect stretches the poloidal
field to give rise to the toroidal field. This toroidal field due to mag-
netic buoyancy emerges on the solar surface in the form of BMRs
(Parker 1955).

In the solar dynamo model, the Babcock–Leighton process is a
crucial component which involves randomness. The extensive ran-
domness arises in the Babcock–Leighton process through the tilt
angle of BMR. The tilt angle of BMR is observed to increase sta-
tistically with the increase of the latitude, which is known as Joy’s
law (Hale et al. 1919). Observations also show that there is a consid-
erable amount of scatter in tilt angle around this Joy’s law (Howard
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1991; Jha et al. 2020). While in most of the previous studies, the
tilt is measured from the sunspot group (when magnetograms data
are not available; Sivaraman et al. 2007) or BMR by repeatedly ob-
serving the same feature (e.g., McClintock & Norton 2016), recently
Sreedevi et al. (2023) have tracked the BMRs for the last two solar
cycles and produced unique tilt for each BMR during this period.
Figure 2 of Sreedevi et al. (2024) shows Joy’s law and the scat-
ter around the tilt obtained from those tracked BMRs. Observations
show that the slope of Joy’s law has some cycle-to-cycle variation,
which can lead to some change in the polar field as demonstrated
by Baumann et al. (2004). However, the observed large scatter in the
tilt around Joy’s law is another major cause of fluctuations in the
poloidal field (Jiang et al. 2014; Karak & Miesch 2017; Lemerle &
Charbonneau 2017). Furthermore, observations show that about 8%
of BMRs in a solar cycle are anti-Hale (McClintock et al. 2014) while
25 to 30% are anti-Joy. These anti-Hale and anti-Joy BMRs produce
opposite polarity field and thus they disturb the regular polar field
(Cameron et al. 2013; Jiang et al. 2014, 2015; Karak & Miesch 2018;
Kitchatinov et al. 2018; Karak et al. 2018; Mordvinov et al. 2022;
Pal et al. 2023). Nagy et al. (2017) showed that in the extreme case, a
sufficiently complex wrongly tilted (rogue) BMRs can considerably
disturb the dynamo and it even may lead to a grand minimum.

The other sources of irregularity in the solar dynamo are the time
delay in the BMR emergence, latitudinal position, and the flux of
BMR. It has been observed that the time delay between two suc-
cessive BMRs is not the same, and it follows a distribution. Again
from the tracked BMRs from MDI and HMI for the last two solar
cycles (Sreedevi et al. 2023), as presented in Fig. 2(a), we find that
the lag between two successive BMR emergences follow a distribu-
tion which can be approximated by a log-normal distribution. This
distribution in the time delay of BMR emergence can introduce a
variation in the solar cycle. A related time delay in the solar dynamo
is the delay in the rise of the BMR-forming toroidal flux tube from the
base of the CZ to the surface; see Sects. 5.3 and 6.4 of Karak (2023).
When this delay is magnetic field dependent, it can lead to a variation
in the solar cycle (Jouve et al. 2010). Furthermore, the latitude of
BMR emergence on the solar surface is also not uniform and plays
a role in determining the strength of the polar field (Baumann et al.
2004; Nagy et al. 2017). In fact, Jiang et al. (2015) had shown that
an anomalous BMR (anti-Hale or anti-Joy) appearing at low latitude
produces a significant change in the dipole moment. The mean lati-
tudes of BMRs in a cycle depend on its strength; in the strong cycles,
BMRs begin at high latitudes (Waldmeier 1955; Solanki et al. 2008;
Jiang et al. 2014; Mandal et al. 2017). Baumann et al. (2004) showed
the photospheric magnetic field at solar minimum decreases with
the increase of the mean latitude of the BMR band. Finally, the flux
content in the erupting BMR is not constant, and it randomly varies
roughly in the range of 1021 to 1023 Mx following a log-normal
distribution as seen in Fig. 2(b); also see Sheeley (1966). Variation
in the BMR flux can cause a change in the poloidal field.

Since the polar magnetic field or its proxy is strongly correlated
with the activity level of the next cycle (Schatten et al. 1978; Choud-
huri et al. 2007; Wang & Sheeley 2009; Kitchatinov & Olemskoy
2011; Muñoz-Jaramillo et al. 2013; Priyal et al. 2014; Kumar et al.
2021, 2022), the variation of the polar field can cause a variation in
the solar magnetic cycle. Therefore, to realize the behavior of the
future solar cycle, it is essential to understand the polar field of the
present cycle.

The variations that we are considering are essentially caused by
the stochastic nature of the convection. However, there is an extensive
literature elucidating the long-term variability due to nonlinearities
arising from the Lorentz feedback of the magnetic field on the flows

(e.g., Tobias et al. 1998; Beer et al. 1998; Weiss & Tobias 2016;
Charbonneau 2020; Karak 2023). However, nonlinearities do not
always produce variation in the solar cycle. Some of the nonlinearities
recognized in the Babcock–Leighton type dynamo models, such as
the flux loss through magnetic buoyancy (Biswas et al. 2022), latitude
quenching (Jiang 2020; Karak 2020), magnetic field dependent tilt
(so-called the tilt quenching Dasi-Espuig et al. 2010; Jha et al. 2020;
Sreedevi et al. 2024), inflows around active regions (Martin-Belda
& Cameron 2017; Nagy et al. 2020; Teweldebirhan et al. 2024) all
have tendency of stabilizing the magnetic field rather than producing
large variations in the solar cycle; see Sec. 6.1 of Karak (2023) for a
detailed discussion.

In this work, we shall only focus on the long-term variability in
the solar cycle due to stochastic forcing caused by the convection on
different parameters of Babcock–Leighton process, particularly the
irregular properties of BMR. We shall make comparative analyses
of the variations of the polar field generated in a cycle arise by the
randomness due to the distributions of (i) the time delay of successive
BMR eruptions, (ii) the BMR flux, (iii) the BMR tilt angle, and (iv)
the latitude of BMR eruption. Our studies differs from the previous
ones who have also studied the effect of irregular properties of BMRs.
For example, (i) Baumann et al. (2004) who studied the effect of the
change of the polar field with the BMR flux distribution profile and
shifting the mean latitude and width of the sunspot band, and the
slope of Joy’s law, (ii) Nagy et al. (2017) who studied the effect
of single rough BMR on the operation of the dynamo at different
latitudes. (iii) Pal et al. (2023) who showed the effect of anomalous
(anti-Hale (anti-Joy), anti-Joy (Hale) and anti-Hale (Joy)) BMRs (5–
10% of the total flux) at different phases of the cycles with different
latitudes. (iv) Cameron et al. (2016) and Bhowmik & Nandy (2018)
who studied the uncertainty in estimating the dipole moment and
predicting the cycle strength by including the variability in BMR tilt,
latitude and flux.

Further, we shall perform simulations using synthetic BMR data of
solar cycles deposited in our 3D kinematic dynamo model STABLE
(Surface Flux Transport and Babcock–Leighton) and analyze the
polar field and solar cycle variation.

2 MODEL

In the present work, we have used a 3D kinematic dynamo model
STABLE (Miesch & Dikpati 2014; Miesch & Teweldebirhan 2016;
Hazra et al. 2017; Karak & Miesch 2017). In this model, BMRs are
deposited based on the toroidal magnetic field present at the base of
CZ, and the decay and dispersal of BMRs near the surface produce
the poloidal field. The poloidal field eventually gives rise to the
toroidal one through differential rotation and sustains the dynamo
loop. This model can also be operated as a surface flux transport
(SFT) model if we deposit BMRs on the solar surface. Karak &
Miesch (2018) showed that this model also produces the correct
latitude-dependent variation of the polar field—higher the latitude
of BMR emergence, lower is the polar field generated. Karak (2020)
showed that this effect leads to so-called latitude quenching which
was suggested by Petrovay (2020); Jiang (2020) based on the SFT
model and observation.

To demonstrate the performance of the STABLE model as SFT
explicitly, we present the axial dipole moment (DM) produced from
a BMR deposited at different latitudes in Fig. 1. We observe that the
STABLE model also captures the behavior as seen in SFT model,
namely, with increasing the latitude of the BMR emergence, the
generation of DM decreases (Fig. 1(a)) and the final saturated dipole
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Polar field and solar cycle variability 3

Figure 1. The results produced from STABLE operating in SFT mode. (a)
Time evolution of the axial dipole moment (𝐷) of a BMR deposited at
different latitudes with constant flux (𝐹) of 1022 Mx and tilt (𝛼) of 80◦. (b)
The values of the saturated (final) dipole moment vs the latitude of single
BMR. The solid curve is the Gaussian profile of the form exp(−𝜆2/110) as
predicted by the SFT model of Jiang et al. (2014).

moment produced can be approximated by a Gaussian profile as
predicted by the SFT models (Jiang et al. 2014; Petrovay et al. 2020).
We would like to mention that Hazra et al. (2017) failed to capture
this feature as they did not include a downward pumping which is
essential to make the model consistent with observations and SFT
models (Cameron et al. 2012; Karak & Cameron 2016).

In the present study, we shall exploit this feature of the STABLE
dynamo model and utilize it as a dynamo simulator to study the
solar cycle variation and as an SFT model to study the polar field
evolution. One advantage of using STABLE for our study is that we
can use the same model in two modes, namely, SFT to study the
surface behaviour of magnetic field and dynamo to study the global
internal dynamics of fields. In the next subsection, we first describe
the STABLE model.

2.1 STABLE model

In this model, we solve the Induction equation in three dimensions
(𝑟, 𝜃, 𝜙) for the whole CZ with 0.69𝑅 ≤ 𝑟 ≤ 𝑅 (𝑅 is the radius of

Figure 2. Distributions of (a) the time delay between two successive BMR
emergences and (b) flux content of 8800 BMRs obtained from MDI and
HMI magnetograms during 1996–2020. These quantities are obtained by
tracking each BMR throughout its lifetime or disk passage and taking the
average values during the time when the flux is above 70% of its maximum
(Sreedevi et al. 2023). The solid lines are the log-normal distributions that
approximately fit the data and are used in our (and Karak & Miesch (2017))
calculations.

the sun), 0 ≤ 𝜃 ≤ 𝜋, and 0 ≤ 𝜙 ≤ 2𝜋.
𝜕𝑩

𝜕𝑡
= ∇× [(𝑽 + 𝜸) × 𝑩 − 𝜂𝑡∇×𝑩] , (1)

where 𝑽 is the velocity field such that

𝑽 = 𝑣𝑟 (𝑟, 𝜃)𝑟 + 𝑣 𝜃 (𝑟, 𝜃)𝜃 + 𝑟 sin 𝜃Ω(𝑟, 𝜃)𝜙. (2)

Here the axisymmetric velocity field is composed of meridional cir-
culation 𝑣𝑟 , 𝑣𝜃 , and the differential rotation (Ω = 𝑣𝜙/𝑟 sin 𝜃). The
profile of Ω used in this model roughly captures the observed proper-
ties as inferred through helioseismology (Schou et al. 1998) and was
used in Karak & Miesch (2017). For the meridional circulation, we
have considered a single cell circulation profile as used in Karak &
Cameron (2016). In equation (1), 𝛾 represents the magnetic pump-
ing which helps to suppress the loss of the toroidal field through the
surface and thus boosts the dynamo efficiency even at high diffu-
sivity (Cameron et al. 2012; Karak & Cameron 2016). Our model
includes a radially downward magnetic pumping of speed 20 m s−1

in the near-surface layer (𝑟 ≥ 0.9𝑅) of the sun. In this model, we
have considered a radial-dependent effective turbulent diffusivity
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Figure 3. (a) The distribution of BMR tilt with mean = 7.82◦ and scatter
𝜎 = 15.51◦ as consistent with observations (Wang et al. 2015) and used
in our study. (b) Time-latitude distribution of synthetic BMR for one cycle
generated using the algorithm described in §2.2.

𝜂𝑡 of order 1012cm2 s−1 (4.5 × 1012cm2 s−1for 𝑟 ≥ 0.956𝑅 and
1.5 × 1012cm2 s−1 below) throughout the whole CZ. Below the CZ,
the magnitude of the diffusivity is reduced by about four orders of
magnitude; see Eq. 4 of Karak & Miesch (2017).

A crucial part of this model is the Spotmaker algorithm, which
places a BMR on the surface when certain conditions are satisfied.
The first condition for generating a BMR is that the magnetic field
strength at the base of CZ must exceed a critical field strength 𝐵𝑐 .
We have made 𝐵𝑐 latitude dependent such that it makes BMR emer-
gence difficult at high latitudes and it helps the model BMRs to be
consistent with the observations (Karak 2020). The second condi-
tion is the time delay between successive BMR emergence. After the
first BMR eruption, the time delays for the subsequent eruptions are
taken randomly from the observed log-normal distribution as shown
in Fig. 2(a), which follows the profile:

𝑃(Δ) = 1
𝜎𝑑Δ

√
2𝜋

exp

[
−(lnΔ − 𝜇d)2

2𝜎2
𝑑

]
(3)

Where 𝜎𝑑 and 𝜇𝑑 are specified as, 𝜎2
𝑑
= 2

3
[
ln 𝜏𝑠 − ln 𝜏𝑝

]
and 𝜇𝑑 =

𝜎2
𝑑
+ ln 𝜏𝑝 . Here 𝜏𝑝 = 0.8 and 𝜏𝑠 = 1.9 and Δ is the time delay

between two successive BMRs (normalized to one day).

Now we have to specify the properties of BMRs (tilt, flux, and
separation) in this model. We take a log-normal distribution of flux
that is close to the observed one as shown in Fig. 2(b).

𝑃(𝜙) = 𝜙0
1

𝜎𝜙𝜙
√

2𝜋
exp

[
−(ln 𝜙 − 𝜇𝜙)2

2𝜎2
𝜙

]
(4)

where 𝜙0 = 1, 𝜇𝜙 = 51.2, and 𝜎𝜙 = 0.77. We have specified the
BMR field strength at the surface as 3 kG. For the separation of
BMRs, we choose the half distance between the centers of two spots
of BMR to be 1.5 times the radius of the spot. The radius of the
BMRs is determined based on the log-normal distribution of the flux
and is given as, 𝑟 =

√︃
𝜙

𝐵𝑠 𝜋
, where 𝐵𝑠 is the surface field. For the tilt

angle of BMRs, we follow the standard Joy’s law (Dasi-Espuig et al.
2010; Stenflo & Kosovichev 2012; Sreedevi et al. 2024):

𝛿 = 𝛿0 cos 𝜃 + 𝛿f , (5)

where 𝜃 is co-latitude, 𝛿0 = 35◦, and 𝛿f includes fluctuations in
the tilt around Joy’s law which follows a Gaussian distribution with
𝜎𝛿 ≈ 15◦ (e.g., Sreedevi et al. 2024). After giving a scatter of
𝜎𝛿 ≈ 15◦, we have found 30 – 35% BMRs are anti-Hale and anti-
Joy. We have ensured that 25 – 30% of total BMRs would be anti-Joy,
and about 8% would be anti-Hale, as observational results suggest.
The distribution of the tilt 𝛿 for a cycle is shown in Fig. 3(a).

Further, we discuss the nonlinearity needed to limit the growth
of the magnetic field. In our model, the latitude-dependent BMR
threshold introduces a nonlinearity the so-called latitude quenching
(Jiang 2020; Karak 2020). This helps to stabilize the growth of the
magnetic field in our model. In addition to this, we include a magnetic
field-dependent quenching of the form: 1/

[
1 + (𝐵/𝐵0)2

]
in the tilt of

BMR (tilt-quenching), inspired by the observations (Jha et al. 2020);
for more details about the model see Karak & Miesch (2017).

2.2 Deposition of synthetic BMRs in STABLE

Now we discuss how instead of using the SpotMaker algorithm,
we can feed synthetic BMR data into STABLE to operate this as
SFT model. Following Jiang et al. (2018), we develop a synthetic
BMR generation code (SBMR Code) to produce smoothed monthly
synthetic BMR data. This can be described by the following equation.

𝐹𝑠𝑚 (𝑡) = 𝑓2 (𝑡) + Δ𝑟 (𝑡) 𝑓2 (𝑡). (6)

Here

𝑓2 (𝑡) =
𝑎𝑡3

exp
[
𝑡2

𝑏2

]
− 𝑐

, (7)

where 𝑡 is time in month, 𝑎 =

(
𝑆𝑛

9072.8

) 1
0.706 with 𝑆𝑛 the amplitude of

the sunspot cycle, 𝑏 = 27.12 +
(

25.15
1000𝑎

) 1
4 , and 𝑐 = 0.71.

When 𝑡 < 72 months,

Δ𝑟 (𝑡) = 8.68 exp

(
−𝑧2

1
2

)
(8)

with 𝑧1 = 𝑡−200.44
45.86 .

When 72 ≤ 𝑡 ≤ 108 months, then

Δ𝑟 (𝑡) = 2.64 exp

(
−𝑧2

2
2

)
(9)
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with 𝑧2 = 𝑡−149.0
27.31 .

Finally in the last phase, when 𝑡 > 108 months, the synthetic BMR
follows the given profile:

𝐹𝑠𝑚 (𝑡) = 𝑓2 (𝑡). (10)

After getting synthetic BMRs, we need to specify the properties of
these BMRs. The mean latitude of the BMRs distribution 𝜆𝑛 depends
on the cycle strength 𝑆𝑛 and it follows the profile:

𝜆𝑛 (𝑡) =
[
26.4 − 34.2

𝑡

𝑇𝑐𝑦
+ 16.1

(
𝑡

𝑇𝑐𝑦

)2
]

𝜆𝑛

14.6
, (11)

where 𝜆𝑛 = 12.2 + 0.015𝑆𝑛 and 𝑇𝑐𝑦 is the cycle period in month.
The scatter in latitude distribution obeys a Gaussian profile with 𝜎

defined as:

𝜎 =

[
0.14 + 1.05

𝑡

𝑇𝑐𝑦
− 0.78

(
𝑡

𝑇𝑐𝑦

)2
]
𝜆𝑛 (𝑡). (12)

We consider synthetic BMR emergence symmetric in both hemi-
spheres, and the longitudinal distribution of BMRs are random. The
BMR eruption time delay is taken randomly within a month. The
time-latitude distribution of the resultant synthetic BMR data for one
cycle is shown in Fig. 3(b). The flux and tilt are taken from the same
prescriptions as discussed above (equations (4) and (5)).

3 RESULTS AND DISCUSSION

We first quantify the effect of randomness due to distributions in BMR
properties on the polar field using the STABLE dynamo model as
SFT. Later we shall measure the variability of the solar cycle using
the STABLE as a dynamo model.

3.1 Variation in the polar field

We feed synthetic BMR data for one cycle (of about 11 years long)
in STABLE and perform simulations by operating it as SFT model
with random variation in different BMR properties. For the statistical
reliability of the result, we have repeated each case for 30 different
realizations of the random number. As a reference case, we first
perform a simulation without adding any random component in the
BMR properties. To address the variability in the polar field arising
from different fluctuating parameters of BMRs, we calculate the
standard deviation 𝜎pol from 30 realizations in each case relative
to the reference polar field. We also calculate the relative variability
attributed from the distributions of various BMR parameters, denoted
as 𝜎pol/𝜎com

pol , where 𝜎pol represents the standard deviation due to
individual BMR parameters (e.g., for time delay𝜎pol = 0.012𝐺), and
𝜎com

pol represents the standard deviation resulting from the combined
fluctuations which is 2.39𝐺); see Table 1. For the quantification of the
polar field, we compute the remnant magnetic flux strength from 55◦
latitude to the pole in the northern hemisphere. It is worth mentioning
that our focus is solely on assessing the comparative effects of various
irregular BMR parameters on the polar field. Consequently, we make
two hemispheres symmetric. However, Nagy et al. (2017) studied
the hemispheric asymmetry due to a single rough BMR and in our
dynamo simulations, we do not impose hemispheric asymmetry. The
variation of this polar field for the reference case is shown by the
black curve in all the Figures 4 – 5.

Figure 4. The plot shows the variation in the polar field arises from the
randomness due to the distribution in the time delay. The black curve is
showing a reference polar field in the plot (see inset for the zoomed-in view).

Table 1. Mean 𝜇 and standard deviation 𝜎 of the distribution of various BMR
parameters (2nd column), variability in the polar field 𝜎pol (3rd column) and
the relative possible percentage variability (4th column) produced in the polar
field due to different individual fluctuation parameters of the BMRs relative
to the combined fluctuations (Fig. 5(d); 𝜎com

pol = 2.39 𝐺).

Variable Distribution 𝜎pol Relative %
parameters (𝜇, 𝜎) (𝐺) variability
Time delay 0.35, 0.76 0.012 0.5%
Latitude equations (11) and (12) 0.330 13.8%
Flux 51.2, 0.77 0.961 40.2%
Tilt scatter 7.82◦, 15.51◦ 1.624 68.7%

3.1.1 Due to the distribution in BMR time delay

The time evolutions of the polar fields obtained from the simulations
with the different realizations of the time delay are shown by different
colors in Fig. 4. We find that these curves deviate only negligibly
from the reference polar field (see black curve and the inset) and the
standard deviation from the reference polar field is 𝜎pol = 0.012 𝐺;
see Table 1. The reason for the tiny changes in the polar field is the
following. The most probable time delay of the BMR emergence rate
is less than a day (mode of the distribution is 0.8 days and mean is
1.9 days; see Fig. 2(a) and the probability decreases with increasing
the time delay. When the time delay is 10 days, the probability of the
BMR emergence is less than 1%. In contrast, the polar field takes
about 1 to 2 years to reach the pole from the active latitude belt
where it is formed. Hence, the variation in the polar field caused by
the variation in the time delay is smoothed out by the time it reaches
the pole and we observe only a negligible variation. We note that
when we performed different simulations at different realizations of
random delay, we kept the total number of BMRs the same in one
month. Instead of this, if we increase this time to six months, then
we also find a tiny variation in the polar field with respect to the
reference case. Hence, based on these simulations, we conclude that
the randomness in the time delay introduces only a slight variation
in the polar field.

3.1.2 Due to the distribution in BMR flux

Now, we analyze the result of the simulations with variation in the
BMR flux, which is lognormally distributed as mentioned in equation
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Figure 5. Format of each panel is the same as Fig. 4, but shows the evolution of polar field from simulations with distribution in (a) BMRs flux (with 𝜎 of
distribution 0.77), (b) BMRs latitude (with 𝜎 of the distribution given by equation (12)), (c) BMR tilt (with distribution 𝜎 = 15.51◦ ) , and (d) all four BMR
parameters.

(4) of §2, keeping all other parameters of the BMR invariant. For 30
realizations, the total flux of sunspots in a solar cycle is considered
a fixed value of 8.93 × 1025𝑀𝑥. Fig. 5 (a) shows the variation of the
polar field for this case. Now we observe a noticeable variation in the
evolution of the polar field. The standard deviation from the reference
polar field is found to be 𝜎pol = 0.961 𝐺. A variation, in this case,
is expected because the contribution to the polar field in a given
hemisphere from decayed active region flux would be proportional
to the total hemispheric active region flux (Kitchatinov & Olemskoy
2011; Petrie 2015). Moreover, Shiota et al. (2012) studied that the
net polar flux is also affected by the number and size of the large
flux concentrations, which qualitatively agrees with our findings.
Therefore, the variation in the BMR flux is one cause of variation in
the polar field.

3.1.3 Due to the distribution in the BMR latitude

Variation in the latitude distribution of BMR also gives a variation in
the polar field strength (𝜎pol = 0.33 𝐺). This is shown in Fig. 5(b), in
which we present the time evolution of the polar field from simula-
tions at different realizations of the BMR latitudes following the same
distribution. We note that the separation of the leading and trailing
poles of the BMRs remains unchanged; only the mean (of leading
and trailing) latitude of the BMR changes randomly in each cycle.
While changing the mean latitude, the tilt is also changed according
to Joy’s law (equation (5)); however, the fluctuations in tilt as param-

eterized by 𝛿 𝑓 remain the same in all simulations. Thus arguably, the
variation that we observe in Fig. 5(b) is the combined effect of lati-
tude and tilt. We further note that we keep the mean and spread of the
latitude distribution of BMRs the same for all cycles and vary only
the individual position of BMR randomly (equations (11) and (12)).
Thus, our investigation differs from Baumann et al. (2004) who stud-
ied the impact of BMR emergence latitude by changing the mean and
spread of the latitude band. Despite the methodological differences,
our results qualitatively align with Baumann et al. (2004) findings,
supporting the conclusion that changes in the latitude of active re-
gions influence the polar field’s strength. A variation in the polar
field due to a change in the BMR latitude is expected because when
BMRs appear at low latitudes, the cross-equatorial cancellation is
much more effective than the BMRs which appear at higher latitudes
(Durrant et al. 2004; Jiang et al. 2015; Pal et al. 2023), which has
been demonstrated in Fig. 1. Moreover, Jiang et al. (2014); Karak &
Miesch (2018) showed that the latitudinal variation of BMRs affects
the polar field strength (also see Mordvinov et al. 2022). We note
that in our case, the variation in the polar field is less because the
mean and the width of the latitude distribution remain the same in
all the simulations, while in the observed solar cycle, these vary with
the cycle strength. Thus, our study shows that even when we keep
the mean latitudinal distribution of the BMR the same and vary the
individual latitude of the BMR, we find a noticeable variation in the
polar field.
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Figure 6. Temporal variations of (a) the monthly total flux of BMRs (red/black: north/south) and (b) the azimuthal-averaged surface radial field from the
simulations in which the time delay in BMR eruption is randomly taken from a distribution.

3.1.4 Due to the distribution in BMR tilt around Joy’s law

Now, we will demonstrate the effect of the tilt scatter of BMR on
the polar field. We computed the tilt of BMR using equation (5)
i.e., Joy’s law with Gaussian scatter captured by 𝛿 𝑓 . In each sim-
ulation, 𝛿 𝑓 changes randomly while keeping the distribution same.
Fig. 5 (c) shows the effect of tilt scatter on the polar field varia-
tion (𝜎pol = 1.624 𝐺). As in the Babcock–Leighton process, it is
the tilt which makes the generation of the poloidal field possible in
the Sun; any change in the tilt can certainly produce variation in the
poloidal field. Particularly when we have a wrongly tilted BMR (anti-
Joy and anti-Hale), it produces an opposite polarity field (e.g., Nagy
et al. 2017; Mordvinov et al. 2022). Recently, Pal et al. (2023) also
showed that the emergence timing, relative numbers, latitude distri-
bution, and flux content of anomalous active regions significantly
impact the reversal timings and strength of the dipole moment; also
see (Golubeva et al. 2023; Biswas et al. 2023b). Furthermore, Jiang
et al. (2015) also mentioned that the cause of the weaker cycle 24
is the wrong-tilted BMR (anti-Hale and anti-Joy) at the lower lati-
tude, which decreases the polar field strength. In our model, we have
included about 30 to 35% anti-Hale and anti-Joy BMRs (consistent
with observations). These anti-Hale and anti-Joy BMRs have oppo-
site tilts than regular BMRs and generate the opposite polarity field.
This opposite polarity field brings about a large fluctuation in the
polar field of our simulation. Previously Upton et al. (2021) also
found that increasing the tilt scatter around Joy’s law significantly
increases the change in the polar axial dipole from one cycle to the
next. By comparing the simulations presented in the previous three
sections with randomness in BMR time delay, flux, latitude, and tilt,
we conclude that the tilt scatter produces maximum variation in the
polar field. For comparative variability in the polar field due to these
parameters (see Table 1).

3.1.5 Due to combined fluctuations

Now we measure the polar field variation due to the combined effect
of all the fluctuations, i.e., the variations in tilt, time delay, flux, and
latitude. This replicates the realistic scenario. The fluctuations due to

the distributions of time delay, flux, latitude and tilt are captured pre-
cisely in the same proportion (distribution) as they were considered
in the individual cases performed above. Fig. 5 (d) shows the polar
field variation in this case. We find that in this case, the variation in
the net polar field strength is highest (𝜎pol = 2.39 𝐺, which we de-
fine as 𝜎com

pol ). Maximum variation is expected because all individual
random effects can contribute additively.

3.2 Variation in the solar cycle

Now we study the variability of the solar cycle due to irregular
properties of BMR by operating STABLE in default mode, i.e., as a
dynamo model. For this, we consider three cases: (i) irregular time
delay in the BMR eruption, (ii) irregular BMR flux, and (iii) scatter
in BMR tilt angle around Joy’s law. The incorporation of fluctuations
in different BMR properties in the dynamo model is exactly the same
as done in the study of polar field variation, which are explained in
§2. To be more specific, the time delay, flux and tilt distributions are
taken from equations (3), (4), and (5), respectively. We note that to
study solar cycle variation, we are not considering the case of the
variation in the BMR latitude separately because it is not trivial to
vary BMR latitude randomly by hand in the dynamo mode of this
model. When the cycle strength varies, the mean latitude of BMR
varies; hence it will be captured when cycle strength varies due to
variation in the polar field caused by fluctuations in BMR properties.
In STABLE, at every numerical timestep, a BMR latitude is chosen
randomly out of the latitude points where the azimuthal field exceeds
the threshold which is latitude-dependent. Moreover, we have seen
in §3.1.3 (Fig. 5(b)) that in the case of variation in latitude due to
its distribution, the variation in the polar field is less compared to
the variations in the tilt and flux and thus we are not performing any
simulations for this case.

Fig. 6 shows the solar cycle variability produced by the random
time delay in BMR emergence. The variation is measured in terms
of the monthly value of the BMR flux and the surface radial field as
the function of time. We find that the variability in the solar cycle
in both hemispheres is negligible. In the polar field evolution §3.1.1,
we have already seen that the random time delay in BMR eruption
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Figure 7. Same as Fig. 6 but from the simulation in which BMR flux is taken from a distribution.

Figure 8. Same as Fig. 6 but from the simulation in which the tilt is randomly taken from a distribution.

causes a negligible variation in the polar field. In the context of
Babcock–Leighton dynamo, the poloidal field gives toroidal field,
which eventually produces BMRs on the solar surface. Therefore, a
tiny variation in the polar field is expected to cause a tiny variation in
the next solar cycle. While this expectation is based on the dynamo
mechanism (e.g., Charbonneau & Barlet 2011; Kumar et al. 2021)
and the observations (Muñoz-Jaramillo et al. 2013), if the dynamo
operates in the chaotic region (much above the critical transition),
even a small change in the polar field can lead to a large change in
the solar cycle. However, it is important to note that our model does
not operate within that specific region, and thus, such effects are not
accounted for in our model. In summary, the simulation performed
in this case indicates that irregular rate of BMR emergence does not
produce significant variation in the solar cycle.

However, when we perform the dynamo simulation with the vari-
ation in BMR flux, we observe a considerable amount of long-term
modulation in the solar cycle as seen in Fig. 7. This is expected given

the fact that it produces a significant variation already in the polar
field as seen in §3.1.2. Next, when we consider the scatter in BMR
tilt around Joy’s law, we again find a large amount of variation in the
solar cycle as seen in Fig. 8. Again this result is congruous with the
expectation that a considerable variation in the polar field is observed
with the tilt scatter. Previous studies have also shown that the scatter
in BMR tilt can produce large variations in the solar cycle, including
grand minima and grand maxima (Lemerle & Charbonneau 2017;
Nagy et al. 2017; Karak & Miesch 2017, 2018).

Now we perform two other simulations by including all the fluc-
tuations mentioned above individually i.e., variation in time delay,
flux, and tilt. The basic difference between these two simulations is
the only time delay. In one simulation, the time delay is magnetic
field independent (Fig. 9), while in another it is magnetic field de-
pendent (Fig. 10). To make the time delay magnetic field dependent,
we make the following changes in the time delay parameters for both
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Figure 9. Same as Fig. 6 but from simulations including distributions in all BMR properties (i.e., time delay, flux, latitude, and tilt) and the time delays are
magnetic field independent.

Figure 10. Same as Fig. 9 but with magnetic field-dependent time delay.

hemispheres:

𝜏𝑝 =
2.2

1 +
[
𝐵𝑏

400

]2 , and 𝜏𝑠 =
20

1 +
[
𝐵𝑏

400

]2 , (13)

where 𝐵𝑏 is the azimuthal-averaged toroidal magnetic field in a thin
layer spanning from 𝑟 = 0.715𝑅 to 0.73𝑅 at approximately 15◦
latitude.

We find more variability and grand minima-like appearance when
the time delay is magnetic field dependent. However, in the magnetic
field independent case, we observe a few triple reversals of the polar
field; see reversal in the southern hemisphere between 375 – 400
years in Fig. 9(b). We find triple reversal events in the magnetic
field-independent time delay case because in this case, the emergence
rate of BMRs does not change much over the solar cycle, while in
the magnetic field-dependent case, it varies largely with the solar
cycle—becoming highest around the solar maxima and lowest around

the solar minima (because in this case the time delay is magnetic
field dependent and varies according to the magnetic field strength).
Therefore, in the magnetic field-independent case, the emergence
rate around the cycle maxima is less (compared to the magnetic
field-dependent case), and as the BMR number is less, the effect
of tilt scatter (the anti-Joy and anti-Hale BMR) is statistically more
prominent. However, in the magnetic field-dependent case, the effect
of tilt scatter largely cancels out due to the relatively large number of
BMR emergences at the times of cycle maxima and this does not lead
to triple reversals. Moreover, observations and models (Mordvinov
et al. 2022) both reveal that the occurrence probability of triple
reversal events is maximum around the time of solar cycle maxima.

Further, magnetic field-dependent and independent time delays
produce variability in the solar cycle in a different way. Since grand
minima and maxima-like events are more probable in the magnetic
field-dependent time delay case and the morphology of the magnetic
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field better resembles the solar observation in this case, the magnetic
field-dependent time delay case is more favorable with observation.
Indeed, the distribution of the time delay in the observation varies
with the solar cycle—becoming narrower during solar maximum and
thus it is magnetic-field dependent.

4 CONCLUSIONS

In this study, we have utilized the 3D STABLE dynamo model to
quantify the relative variations of the polar field and the solar cycle
due to the stochastic properties of BMRs in the poloidal field genera-
tion (Babcock–Leighton process). We, for the first time, showed that
our dynamo model can reproduce the most robust feature, namely
the variation of the generated axial dipole moment with the latitude
of BMR, as found in SFT models (e.g., Jiang et al. 2014). Thus,
it gives some confidence on the applicability of the results of the
dynamo model to observations. Next we present the distributions of
the flux and time delay of BMRs obtained by tracking them from the
high-resolution magnetograms. Guided by these observations that
the BMR properties follow distributions, we have studied the varia-
tions that arise from the distributions in the following processes: (i)
time delay in BMR emergence, (ii) BMR flux, (iii) BMR latitude,
and (iv) BMR tilt angle. While earlier studies presented significant
disturbance in the polar field due to the scatter in the BMR tilt around
Joy’s law (e.g., Jiang et al. 2014; Karak & Miesch 2017), anomalous
BMRs (Nagy et al. 2017; Pal et al. 2023), changes in the flux and
latitudinal positions of BMRs (Baumann et al. 2004; Hazra et al.
2017; Bhowmik & Nandy 2018; Pal et al. 2023), here we presented a
comparative analysis of the variation of the polar field and the solar
cycle strength using the same input and the same model (STABLE),
operating as SFT and dynamo modes. Unlike previous studies, we
have kept the cycle strength same, and thus the mean and width of the
distributions of the tilts, latitudes, and fluxes of BMRs of the cycles
are the same, and we only varied the individual properties of BMRs,
keeping their distributions the same. The most surprising result of
our study is that the time delay and latitude variations produce only
little variations in the mean polar field of the cycle (and thus the
cycle strength). A relatively large variation is observed due to dis-
tribution in the flux and the largest variability appears due to scatter
in the BMR tilt; see Table 1. The combined effects of the distribu-
tions of all parameters of the BMRs on the polar field and the solar
cycle are obviously the highest, and they are sufficient to reproduce
a large spectrum of the observed modulation in the solar cycle and
the magnetic field, including producing grand minima and maxima,
and triple reversals of the polar field (Mordvinov et al. 2022). In
agreement with previous results, our study suggests that the irregular
properties of BMR as observed in the forms of their respective distri-
butions are the major causes of the observed variability in the polar
field and the solar cycle. Moreover, our simulations show that the
magnetic field-dependent time delay of BMR emergence produces
more realistic features of the magnetic cycle, and this is consistent
with observation as well.
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